| represent the unit | vector due north. | | | |---|---|------------------------|-----------------------| | (a) Find the value | e of a . | | | | (b) Find the magn
www.formular1maths.com | itude of the force F . www.formular1maths.com | www.formular1maths.com | www.formular1maths.co | | | | | | | | | | , | www.formular1maths.com | www.formular1maths.com | www.formular1maths.com | www.formular1maths.co | | where u is a positiv | e constant. | | | | where a is a positiv | $oldsymbol{F_2}$ act on a particle. Give $oldsymbol{a}$ e constant. | | | | | | | | | (a) Find the angle l | | | | | - | between F_2 and $oldsymbol{i}$. | | | | (a) Find the angle be The resultant of F | between F_2 and $oldsymbol{i}$. | he value of a . | | | (a) Find the angle IThe resultant of F(b) Given that R is | petween $oldsymbol{F_2}$ and $oldsymbol{i}$. $oldsymbol{a}$ and $oldsymbol{F_2}$ is $oldsymbol{R}$. | • | www.formular1maths.co | | (a) Find the angle IThe resultant of F(b) Given that R is | petween F₂ and i.
₁ and F₂ is R.
parallel 11 i – 10 j , find t | • | www.formular1maths.co | | (a) Find the angle IThe resultant of F(b) Given that R is | petween F₂ and i.
₁ and F₂ is R.
parallel 11 i – 10 j , find t | • | www.formular1maths.co | | (a) Find the angle IThe resultant of F(b) Given that R is | petween F₂ and i.
₁ and F₂ is R.
parallel 11 i – 10 j , find t | • | www.formular1maths.co | | (a) Find the angle IThe resultant of F(b) Given that R is | petween F₂ and i.
₁ and F₂ is R.
parallel 11 i – 10 j , find t | • | www.formular1maths.co | | (a) Find the angle IThe resultant of F(b) Given that R is | petween F₂ and i.
₁ and F₂ is R.
parallel 11 i – 10 j , find t | • | www.formular1maths.co | | (a) Find the angle IThe resultant of F(b) Given that R is | petween F₂ and i.
₁ and F₂ is R.
parallel 11 i – 10 j , find t | • | www.formular1maths.co | | (a) Find the angle IThe resultant of F(b) Given that R is | petween F₂ and i.
₁ and F₂ is R.
parallel 11 i – 10 j , find t | • | www.formular1maths.co | | (a) Find the angle IThe resultant of F(b) Given that R is | petween F₂ and i.
₁ and F₂ is R.
parallel 11 i – 10 j , find t | • | www.formular1maths.co | | (a) Find the angle IThe resultant of F(b) Given that R is | petween F₂ and i.
₁ and F₂ is R.
parallel 11 i – 10 j , find t | • | www.formular1maths.co | | (a) Find the angle IThe resultant of F(b) Given that R is | petween F₂ and i.
₁ and F₂ is R.
parallel 11 i – 10 j , find t | • | www.formular1maths.co | | (a) Find the angle IThe resultant of F(b) Given that R is | petween F₂ and i.
₁ and F₂ is R.
parallel 11 i – 10 j , find t | • | www.formular1maths.co | | (a) Find the angle IThe resultant of F(b) Given that R is | petween F₂ and i.
₁ and F₂ is R.
parallel 11 i – 10 j , find t | • | www.formular1maths.co | | and $F_3 = {a \choose b} N$, where a and b are constants. Given that Q is in equilibrium, (a) find the values of a and b . (b) The force F_1 is now removed. The resultant of F_2 and F_3 is R . Find: (i) the magnitude of R . (ii) the angle, to the nearest degree, that the direction of R makes with the horizontal. www.formular1maths.com www.formular1 | |--| | (b) The force $\mathbf{F_1}$ is now removed. The resultant of $\mathbf{F_2}$ and $\mathbf{F_3}$ is \mathbf{R} . Find: (i) the magnitude of \mathbf{R} . (ii) the angle, to the nearest degree, that the direction of \mathbf{R} makes with the horizontal. | | (i) the magnitude of R . (ii) the angle, to the nearest degree, that the direction of R makes with the horizontal. | | (ii) the angle, to the nearest degree, that the direction of $m{R}$ makes with the horizontal. | vww.formular1maths.com www.formular1maths.com www.formular1maths.com www.formular1maths. |